Le confezioni della BestEraser

Per condividere con gli alunni il video che presenta questo problema, fornire il seguente link:
https://youtu.be/R5FFWDh5GoE

Domande e risposte

La gomma per cancellare descritta nel video-problema è un parallelepipedo i cui spigoli misurano 3,5 cm, 1,8 cm e 1,1 cm.
La ditta che produce queste gomme vuole imballarle in confezioni da dieci gomme ciascuna e sta valutando la possibilità di usare delle scatole già disponibili a magazzino: le scatole rosse (parallelepipedi di dimensioni 7,2 cm, 5,7 cm e 1,9 cm), le scatole blu (parallelepipedi di dimensioni 12 cm, 6,5 cm e 1,5 cm) o le scatole gialle (parallelepipedi di dimensioni 7,4 cm, 3,5 cm e 2,5 cm).
Ai ragazzi si chiede, in particolare, se c’è qualche scatola in cui si riescono a sistemare 10 gomme. Viene anche chiesto di descrivere il procedimento utilizzato per rispondere.

Per cominciare, si può calcolare il volume di una gomma e delle diverse scatole:

  • il volume di una gomma è 3,5 cm x 1,8 cm x 1,1 cm = 6,93 cm3 (quindi il volume di 10 gomme è 69,3 cm3);
  • il volume della scatola rossa è 7,2 cm x 5,7 cm x 1,9 cm = 77,976 cm3;
  • il volume della scatola blu è 12 cm x 6,5 cm x 1,5 cm = 117 cm3;
  • il volume della scatola gialla è 7,4 cm x 3,5 cm x 2,5 cm = 64,75 cm3.

In base a questi calcoli si può essere certi che la scatola gialla non riesce a contenere 10 gomme, dato che 64,75 < 69,3.

Non è però possibile, solo dal confronto dei volumi, stabilire molto altro. In particolare, il fatto che il volume della scatola rossa e quello della scatola blu siano maggiori del volume occupato da 10 gomme non basta per poter dire che queste scatole possano contenere 10 gomme, perché le gomme non sono un fluido che può essere versato nella confezione assumendone la forma!

La scatola rossa può contenere effettivamente 10 gomme: possiamo disporle in due file da 5 gomme ciascuna in modo che il lato da 1,8 cm della gomma sia in verticale (e possiamo farlo perché l’altezza della scatola è 1,9 cm e 1,8<1,9). Il fatto che 5×1,1<5,7 ci garantisce che lungo il lato da 5,7 cm ci stanno i lati da 1,1 cm di 5 gomme; il fatto che 2×3,5<7,2 ci garantisce che lungo il lato da 7,2 cm ci stanno i lati da 3,5 cm di 2 gomme.

Per quanto il volume della scatola blu sia ancora più grande di quello della scatola rossa, la scatola blu non può contenere 10 gomme. L’altezza della scatola (1,5 cm) infatti rende obbligatorio disporre le gomme in modo che il lato da 1,1 cm sia in verticale (gli altri lati della gomma infatti sono entrambi più lunghi di 1,5 cm). Con qualche tentativo, non è difficile rendersi conto che più di 9 gomme non possono essere inserite nella scatola blu.

Commenti

L’idea per Le confezioni della BestEraser è nata dalla discussione sorta tra alcuni insegnanti in merito a questo problema (tratto da un sussidiario per la scuola primaria):

In una cassa cubica con lo spigolo di 48 cm si mettono delle scatole che hanno il volume pari a 96 cm3 ciascuna. Quante scatole ci staranno?

Per alcuni degli insegnanti che hanno partecipato alla discussione, il problema così posto non poteva essere risolto, perché  nulla si dice sulla forma delle scatole; altri giungevano alla stessa conclusione, dando però per scontato che le scatole fossero dei parallelepipedi e lamentando il fatto di non conoscerne le dimensioni; altri ancora calcolavano il volume della cassa cubica (48 cm x 48 cm x 48 cm =  110592 cm3) e lo dividevano per il volume della singola scatola (110592 cm3 : 96 cm3 = 1152).
È bastato poco, tra colleghi, per trovare quale errore e quale “pregiudizio” si nascondesse sotto la sicurezza di chi sosteneva che nella cassa si potessero inserire 1152 scatole, indipendentemente dalla loro forma; è bastato chiudere gli occhi e cercare di immaginarsi la situazione, per capire che se le scatole da inserire sono sferiche o cilindriche, o hanno forme poliedriche ma bislacche, si “perde” un sacco di spazio. La discussione è proseguita poi per cercare di costruire per gli alunni un problema con un testo meno “perentorio”, che di per sé li invitasse a discutere e a non dare troppe cose per scontate.

Un problema significativo

Quanto raccontato nel video-problema non è un puro espediente, ma corrisponde a un problema reale, che si pone spesso a coloro che si occupano di attività produttive e commerciali: quello di impacchettare un certo numero di prodotti in una confezione oppure di ottimizzare la maniera di caricare in un camion un certo numero di scatole, magari anche di forme e dimensioni diverse.
I problemi di impacchettamento possono diventare davvero difficili, ma anche questo – nella sua relativa semplicità – è significativo perché fa capire come non sia sufficiente ragionare col volume degli oggetti e del contenitore in questione (nel nostro caso le gomme e le scatole), ma è necessario tenere conto della loro forma e dei differenti modi per disporre gli oggetti nel contenitore.

Se avessimo a che fare con fialette contenenti 6,93 cm3 di un certo liquido e volessimo riversare questo liquido in una bottiglietta della capacità di 117 cm3, basterebbe calcolare 117:6,93 per sapere che potremmo svuotare nella bottiglietta più di 16 ma meno di 17 fialette. Però se 6,93 cm3 è il volume di una gomma e 117 cm3 quello di una scatola, il risultato di questa divisione non ci dice molto.

Il volume ci dà effettivamente delle informazioni. E possono anche essere informazioni che tagliano la testa al toro in modo molto comodo: per esempio, è bastato calcolare il volume della scatolina gialla per dire che essa non può contenere 10 gomme (perché il suo volume è minore di quello di 10 gomme). In generale, il fatto che una scatola abbia il volume maggiore del volume di 10 gomme è una condizione necessaria affinché la scatola contenga 10 gomme.
Non è però una condizione sufficiente. Lo si può capire facilmente pensando ad una scatola anche dal volume enorme, con due dimensioni enormi, ma con la terza dimensione minore di 1 cm (e quindi più corta dello spigolo più piccolo della gomma, lungo 1,1 cm): in una scatola di questo tipo, per quanto il suo volume possa essere arbitrariamente grande, non si riesce a infilare nemmeno una gomma!

Da questa osservazione è possibile ricavare una condizione sufficiente (ma non necessaria) affinché si possano inserire 10 gomme in una scatola: se una delle dimensioni della scatola è (anche di poco) più grande di una delle dimensioni della gomma moltiplicata per 10, basta che ciascuna delle altre due dimensioni della scatola sia (anche di poco) più grande di una delle altre due dimensioni della gomma; in questo caso le gomme si potranno inserire nella scatola in una unica fila formata da 10 gomme.
Un’altra condizione sufficiente (ma, ancora, non necessaria) affinché si possano inserire 10 gomme in una scatola potrebbe essere questa: se una delle dimensioni della scatola è (anche di poco) più grande di una delle dimensioni della gomma moltiplicata per 5, e un’altra dimensione della scatola è (anche di poco) più grande del doppio di un’altra dimensione della gomma, basta che la terza dimensione della scatola sia (anche di poco) più grande della terza dimensione della gomma; in questo caso le gomme si potranno inserire nella scatola in due file sovrapposte formate da 5 gomme ciascuna.
Queste condizioni sono facili da verificare con i conti o con il righello (che misura lunghezze e non volumi!) come suggerito nel video, anche senza costruire in cartoncino 10 modellini di gomme: conti o righello possono essere utilizzati per controllare quante volte le dimensioni della gomma siano contenute in quelle delle scatoline, focalizzando l’attenzione sulle dimensioni lineari.
Chiaramente nessuna di queste due condizioni è necessaria, dal momento che non si richiede che tutte le gomme siano riposte “nello stesso modo” all’interno della scatola. Con questo intendiamo dire che, per quanto quelle di questo tipo siano le disposizioni con le quali ci viene più “naturale” fare i primi tentativi, non è detto che gli spigoli delle gomme di uguale lunghezza debbano essere tutti paralleli e quindi molte altre disposizioni sono possibili.

Strategie risolutive diverse

Possiamo prevedere, accettare e addirittura stimolare sia un approccio molto concreto a questo problema (quello di chi costruisce i modellini in cartoncino e va per tentativi) sia un approccio più astratto (quello di chi si mette a ragionare direttamente sulle misure).
Se in una classe gruppi di alunni diversi useranno diversi approcci, confrontarli durante la discussione finale sarà un arricchimento per tutti.

Potrebbero inoltre emergere modi diversi di sistemare lo stesso numero di gomme all’interno della stessa scatola. Anche questa molteplicità di proposte sarà da valorizzare: spesso abbiamo (e più noi adulti dei ragazzi…!) un modo di pensare molto rigido e stereotipato per cui, se siamo abituati a vedere la gomma appoggiata al tavolo in un certo modo, tendiamo a pensarla solo in quella posizione anche quando dobbiamo immaginare come riporla nella scatola. Se qualche gruppo non riuscisse a inserire 10 gomme nella scatola rossa, ciò potrebbe essere dovuto proprio al continuare a pensare alle gomme appoggiate al fondo della scatola sulla loro faccia “più estesa”:  vedere le 10 gomme inscatolate dai loro compagni potrà aiutarli  a superare questa rigidità.

Un problema aperto

Sono tante le domande che potrebbero nascere nei ragazzi, o che l’insegnante potrebbe porre loro per continuare a riflettere sui nodi proposti da questo problema o per verificarne l’effettiva comprensione. Ad esempio:

  • sapreste progettare altre scatole a forma di parallelepipedo, che contengano 10 gomme uguali a quelle descritte nel video-problema?
  • sapreste immaginare una scatola a forma di parallelepipedo, con un volume maggiore di quello di 10 gomme (cioè un volume maggiore di 69,3 cm3), dove però non si riesca a far stare nemmeno una gomma di quelle descritte nel video-problema?
  • sapreste immaginare una gomma, sempre a forma di parallelepipedo, sempre con un volume di 6,93 cm3 che però, anche da sola, non possa essere contenuta in alcuna delle tre scatole descritte nel video-problema?

Scenari possibili

Questo video-problema può essere tranquillamente proposto in una classe terza della scuola secondaria di primo grado.

Ma può essere proposto pure in una classe quinta della scuola primaria, anche senza dover dare a ciascun gruppo di lavoro le dieci gomme e le tre scatoline, a patto di averli fatti lavorare in precedenza su alcuni esempi concreti: quante risme di carta ci stanno nel cassetto della cattedra? Quante scatole di un certo tipo ci stanno nell’armadio della classe? Quanti volumi dell’enciclopedia ci stanno nello scaffale della libreria della biblioteca? Quanti pacchetti di fazzolettini di carta ci stanno nella scatola che la maestra ha portato per tenerli in classe?

Materiale necessario

Come già specificato, non è necessario che ogni gruppo di lavoro abbia a disposizione le tre scatole e le 10 gomme, anzi: il fatto di non averle (o di essere sufficientemente pigri per non aver voglia di costruirsene dei modelli in cartoncino) può spronare verso il ragionamento e l’astrazione.

È però importante che venga lasciata la possibilità a chi ne sente l’esigenza di costruirsi questi modelli in cartoncino, in modo da verificare le proprie ipotesi o da avere abbastanza elementi per formularne di nuove.

Un modello concreto costruito dall’insegnante, o le foto riportate in questo articolo, o alcuni disegni ben fatti possono essere d’aiuto per convincere alunni particolarmente scettici e particolarmente in difficoltà.

Problemi collegati

Tra i Problemi per matematici in erba ce n’è un altro, sempre legato a come alcuni parallelepipedi possano essere inscatolati in un parallelepipedo più grande: La fabbrica di saponette.
I due problemi, per quanto simili, offrono spunti di riflessione diversi e complementari.


Un prisma stellare

Giovanna, come compito per casa, deve trovare il volume di un prisma che ha questa forma:

L'immagine rappresenta un prisma retto con una stella a cinque punte come base.

Sa che la base è una stella regolare a cinque punte i cui lati misurano tutti 2 cm e sa che il prisma è alto 5 cm. Però non ha la più pallida idea di come calcolare l’area della stella.

Leggi tutto “Un prisma stellare”

Allegati

  • Un prisma stellare • 370 kB • 481 click
    Testo del problema "Un prisma stellare" scaricabile e stampabile

I viaggi di Gulliver

Il brano che segue è tratto da I viaggi di Gulliver di Jonathan Swift:

“Feci allora un gesto per indicare che volevo bere. Dal mio modo di mangiare avevano capito che una piccola quantità non mi sarebbe bastata; ed essendo un popolo ingegnosissimo, con molta abilità issarono una delle loro botti più grandi, la fecero rotolare verso la mia mano e la scoperchiarono in alto; io bevvi tutto in un solo sorso, cosa che potevo ben fare poiché conteneva appena una mezza pinta e aveva il gusto di un leggero vino di Borgogna, ma assai più squisito.”
Leggi tutto “I viaggi di Gulliver”

Allegati

Le tre piramidi e il cubo

Per condividere con gli alunni il video che presenta questo problema, fornire il seguente link:
https://youtu.be/-YKYb50LzY8

Soluzione

Ciascuna piramide ha 5 facce: un quadrato, due triangoli rettangoli isosceli uguali tra loro e altri due triangoli rettangoli uguali tra loro.
Ciascuna piramide ha 8 spigoli e 5 vertici.

Disegno di una delle tre piramidi identiche che insieme formano un cubo

Se lo spigolo del cubo che si ottiene unendo le tre piramidi misura 7 cm, le misure richieste  nel problema (facendo riferimento alla figura qui sopra) sono le seguenti:

  • i segmenti AB, BC, CD, DA, AV sono tutti spigoli del cubo e quindi misurano 7 cm;
  • i segmenti BV e DV sono diagonali delle facce del cubo e misurano 7√2 cm (ossia circa 9,9 cm);
  • il segmento CV è la diagonale del cubo e quindi misura 7√3 cm (ossia circa 12,1 cm);
  • l’area della base ABCE misura 49 cm2;
  • l’area dei triangoli rettangoli isosceli ABV e ADV misura 24,5 cm2;
  • l’area dei triangoli rettangoli BCV e DCV misura 24,5√2 cm2;
  • il volume della piramide misura 49×7/3 cm3=343/3 cm3 ossia circa 114,3 cm3.

Lo sviluppo piano della piramide descritta può essere rappresentato in modi diversi, ad esempio:

tre possibili sviluppi piani della piramide

Se indichiamo con s la misura dello spigolo del cubo che si ottiene unendo le tre piramidi, le misure richieste  nel problema (facendo riferimento alla figura qui sopra) sono le seguenti:

  • i segmenti AB, BC, CD, DA, AV hanno lunghezza s;
  • i segmenti BV e DV misurano √2s;
  • il segmento CV misura √3s;
  • l’area della base ABCE misura s2;
  • l’area dei triangoli rettangoli isosceli ABV e ADV misura s2/2;
  • l’area dei triangoli rettangoli BCV e DCV misura s2√2/2;
  • il volume della piramide misura s3/3.

Commenti

Un problema significativo

“Le tre piramidi e il cubo” permette, manipolando e osservando oggetti molto semplici, di avvicinarsi ad alcuni fatti della geometria solida elementare che tanto elementari non sono.

Per prima cosa, il problema fornisce un esempio concreto di piramide che (pur essendo una semplicissima piramide a base quadrata) è diversa da quelle che fanno parte dell’immaginario collettivo (come le piramidi d’Egitto) e che sono piramidi rette (ossia piramidi nelle quali il piede dell’altezza cade nel centro della circonferenza inscritta nel poligono di base). È buffo vedere come nei libri di testo della scuola media non si lavori mai su piramidi che non siano rette!

In secondo luogo, il problema permette di visualizzare la diagonale del cubo e la diagonale delle facce del cubo. Un altro modello molto utile a questo scopo è quello dello “scheletro” di un cubo costruito, per esempio, con cannucce e scovolini da pipa.

Inoltre questo problema rende visibile, in un caso particolare, il fatto che il volume di una piramide è 1/3 del volume di un parallelepipedo con lo stesso poligono di base e la stessa altezza. Non si tratta di una dimostrazione, chiaramente: è però un buon modo per convincere i ragazzi del fatto che la “formula” che trovano sul libro è plausibile e per rendere quella stessa formula più facile da memorizzare.

Metacognizione

“Le tre piramidi e il cubo” insegna, a proposito dell’apprendimento, che a volte possiamo conoscere meglio qualcosa scomponendolo in parti o, viceversa, componendo parti più semplici a formare un tutt’uno più complesso.

Questa abilità del passare dalla parte al tutto (e viceversa) o da un problema a dei sotto-problemi (e viceversa) si costruisce nel tempo, anche affrontando problemi come questo, in cui la parte e il tutto sono oggetti concreti.

Un problema memorabile

Come si diceva poco sopra, è probabile che i ragazzi, dopo aver toccato con mano le tre piramidi e il cubo che esse formano, ricordino più facilmente il fattore 1/3 nella formula che lega il volume della piramide all’area di base e all’altezza.

Un problema aperto

Una delle direzioni verso le quali è possibile proseguire il discorso aperto da “Le tre piramidi e il cubo” è quella dell’avvio all’algebra.
Nel video viene chiesto ai ragazzi più grandi (immaginiamo quelli della classe terza della scuola secondaria di primo grado, ma tutto dipende dal livello di confidenza raggiunto nell’uso delle lettere come numeri) di esprimere le lunghezze degli spigoli e le aree delle superfici delle facce della piramide in funzione della misura s dello spigolo del cubo.

A meno che i ragazzi abbiano già imparato a memoria eventuali formule presenti sul libro di testo, la cosa più difficile è manipolare l’algebra che permette di determinare, applicando il teorema di Pitagora, le misure della diagonale del quadrato e della diagonale del cubo.

La misura della diagonale BV della faccia del cubo è data da

√(s2+s2)=√(2s2)=√2·√s2=√2·s

La misura della diagonale CV del cubo è data da

√(s2+(√2·s)2)=√(s2+2s2)=√(3s2)=√3·√s2=√3·s.

Se i ragazzi da soli non riuscissero in questa “impresa”, vale la pena di accompagnarli, perché questo calcolo (se non lo si fa diventare un mero esercizio di tecniche imparate a memoria) permette di ritornare sulla definizione di radice quadrata e sul suo significato.
È esperienza comune di noi insegnanti, infatti, quella di ragazzini (e non solo ragazzini!) che sanno calcolare la radice quadrata di quadrati perfetti grandissimi, o sanno approssimare la radice quadrata dei numeri più strani (usando le tavole numeriche, la calcolatrice, o qualche algoritmo imparato più o meno a fatica), ma poi non sanno rispondere a domande come “qual è il quadrato di √3?” o che, per rispondere a domande tipo “qual è la radice quadrata del quadrato di 57?” prima calcolano il prodotto di 57×57 e poi estraggono la radice quadrata.

Trovare l’area delle facce della piramide non dovrebbe creare grosse difficoltà:

  • il quadrato di base ha area s2;
  • le facce a forma di triangolo rettangolo isoscele sono metà quadrato, quindi hanno area s2/2;
  • le altre due facce hanno ciascuna area
    (s·√2·s)/2=(√2·s2)/2.

Nelle classi in cui abbiamo proposto questo problema è stato interessante chiedere l’area totale della superficie dello sviluppo piano della piramide. Si è infatti creata l’occasione per rispondere, con un esempio, a una domanda pressante da parte dei ragazzi: a che cosa serve il calcolo letterale? L’espressione che si ottiene  applicando la proprietà distributiva alla somma delle singole aree è questa:
(2+√2)s2.
I ragazzi vedono immediatamente che questa espressione, anche se ha richiesto un po’ di “lavoro con le lettere” è più facile da gestire (ad esempio se chiediamo ai ragazzi di disegnarne il grafico o di farlo disegnare ad un foglio di calcolo) rispetto a quella “non semplificata”:
s2+2·(s2/2)+2·(√2·s2)/2.
Inoltre è interessante notare, insieme ai ragazzi, che le due espressioni possono essere entrambe utili per capire cose diverse: se la prima dice immediatamente che la misura della superficie dello sviluppo piano della piramide dipende solo dallo spigolo di base ed è direttamente proporzionale al suo quadrato, la seconda è di lettura meno immediata, ma può essere utile per mettere in evidenza l’area delle singole facce della piramide.

Un problema di matematica con effetto sorpresa

Nel video l’effetto sorpresa è “vanificato” dal fatto che il cubo viene mostrato presto. Ma può essere riconquistato facendo effettivamente costruire ai ragazzi le tre piramidi (una volta scoperto come deve essere lo sviluppo piano) e lasciando che essi chiedano ad amici e parenti se riescono a ricostruire, con esse, un cubo.

Scenari possibili

Il problema è, nel suo complesso, particolarmente adatto alle classi terze della scuola secondaria di primo grado o alle classi prime della scuola secondaria di secondo grado.
Evitando di indugiare sulla domanda che richiede un minimo di confidenza con l’uso delle lettere per esprimere numeri, può essere però anche molto adatto per una classe seconda media, come problema in cui si vede concretamente applicato, in modo significativo, il teorema di Pitagora.
E ancora: se ci si limita alla prima richiesta (contare i vertici e gli spigoli e descrivere la forma delle facce) può essere proposto anche a classi prime della scuola secondaria di primo grado o ad alunni della scuola primaria.

Materiale necessario

Nel caso in cui si chieda ai ragazzi di costruire le piramidi, sono necessari cartoncino, materiale da disegno, forbici e nastro adesivo.

Problema tratto da…

Le tre piramidi e il cubo è tra i Problemi per matematici in erba citati in Diario di bordo (Sofia Sabatti, edizioni mateinitaly, 2020), un testo nel quale alcuni dei problemi presentati in questo sito vengono contestualizzati all’interno di un anno scolastico vissuto da una classe terza della scuola secondaria di primo grado.


C’è scatola e scatola

Alice e Vanessa sono sorelle e, come spesso accade, sono sempre molto attente a che una non riceva (da nonni, genitori o adulti in generale) qualche cosa in più dell’altra, che si tratti di attenzioni, di regali o del permesso di fare qualcosa.
Con grande gioia della mamma stanno mettendo in ordine la loro camera e vorrebbero avere una scatola per ciascuna, in cui mettere i propri braccialetti. Si mettono così a cercarle nell’armadietto dove sono riposte tutte le vecchie scatole vuote (di biscotti, di scarpe, di caffè, di cioccolatini…), ma dopo poco nasce un litigio furibondo, perché non ne trovano due uguali.
Leggi tutto “C’è scatola e scatola”

Allegati

  • C'è scatola e scatola • 322 kB • 1134 click
    Testo del problema "C'è scatola e scatola" scaricabile e stampabile
My Agile Privacy
Questo sito utilizza cookie tecnici e di profilazione. Cliccando su accetta si autorizzano tutti i cookie di profilazione. Cliccando su rifiuta o la X si rifiutano tutti i cookie di profilazione. Cliccando su personalizza è possibile selezionare quali cookie di profilazione attivare.
Attenzione: alcune funzionalità di questa pagina potrebbero essere bloccate a seguito delle tue scelte privacy